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14.1  Periodic  and  Oscillatory  motion 
 
Motion  of  a  system  at  regular  interval  of  time  on  a  definite  path  about  a  definite  point  is  
known  as  a  periodic  motion,  e.g.,  uniform  circular  motion  of  a  particle.   
 
To  and  fro  motion  of  a  system  on  a  linear  path  is  called  an  oscillatory  motion,  e.g.,  motion  
of  the  bob  of  a  simple  pendulum. 
 
14.2  Simple  harmonic  motion 
 
This  is  the  simplest  type  of  periodic  motion  which  can  be  understood  by  considering  the  
following  example. 
 
Suppose  a  body  of  mass   m   is  
suspended  at  the  lower  end  of  a  
massless  elastic  spring  obeying  
Hooke’s  law  which  is  fixed  to  a  rigid  
support  in  the vertical  position.  The  
spring  elongates  by  length   ∆l  and  
attains  equilibrium  as  shown  in         
Fig. ( b ) 
 
Here  two  forces  act  on  the  body. 
 
( 1 )   Its  weight,   mg,   downwards   and 
 
( 2 )  the  restoring  force  developed  in  

the  spring,   k ∆l ,   upwards,  
where   k  =  force  constant  of  the  
spring. 

 
For  equilibrium,   mg  =  k ∆l      …     ( 1 ) 
 
The  spring  is  constrained  to  move  in  
the  vertical  direction  only.   
 
Now,  suppose  the  body  is  given  some  energy  in  its  equilibrium  condition  and  it  undergoes  
displacement   y   in  the  upward  direction  as  shown  in    Fig.  ( c ). 
 
Two  forces  act  on  the  body  in  this  displaced  condition  also. 
 
( 1 )   Its  weight,   mg,   downwards   and 
 
( 2 )   the  restoring  force  developed  in  the  spring,   k ( ∆l  -  y ),   upwards. 
 
The  resultant  force  acting  on  the  body  in  this  condition  is  given  by 
 
F   =   - mg  +  k ( ∆l  -  y )     …    …    ( 2 ) 
 
From  equations   ( 1 )  and  ( 2 ), 
 
F   =   - ky 
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Displacement: 
 
The  distance  of  the  body  at  any  instant  from  the  equilibrium  point  is  known  as  its  
displacement  at  that  instant.  The  displacements  along  the  positive  Y-axis  are  taken  as  positive  
and  those  on  the  negative  Y-axis  are  taken  as  negative. 
 
In  the  equation,   F   =   - ky,  F  is  negative  when  y  is  positive  and  vice  versa.  Thus,  the  
resultant  force  acting  on  the  body  is  proportional  to  the  displacement  and  is  directed  
opposite  to  the  displacement,  i.e.,  towards  the  equilibrium  point. 
 
Differential  equation  of  simple  harmonic  motion  ( SHM ) 
 
According  to  Newton’s  second  law  of  motion, 
 

F  =  ma  =  m 
dt
dv   =  m  

2

2

dt

yd   =  - ky   ( for  spring-type  oscillator  as  above ) 

 

∴   
2

2

dt

yd    =   -  
m
k y   =   -  ω0

2y   ( taking   
m
k   =   ω0

2 ) 

 

∴   
2

2

dt

yd   +  ω0
2y   =   0 

 
This  is  the  differential  equation  of  SHM. 
 
To  obtain  the  solution  of  the  above  differential  equation  is  to  obtain  y  as  a  function  of  t  
such  that  on  twice  differentiating    y    w.r.t.   t,   we  get  back  the  same  function   y   with  a  
negative  sign.  Both  the  sine  and  the  cosine  functions  possess  such  a  property. 
 
Hence,  taking   y   =   A1 sin ω0t   +   A2 cos ω0t   as  a  possible  solution  and  differentiating   twice  
w.r.t.   t, 
 

dt
dy     =   A1 ω0 cos ω0t   -   A2 ω0 sin ω0t   and 

 

2

2

dt

yd   =   -  A1 ω0
2 sin ω0t   -   A2 ω0

2 cos ω0t 

 
          =   - ω0

2  ( A1 sin ω0t   +   A2 cos ω0t )   =   - ω0
2y 

 
Thus,   y t  =  A1 sin ω0t   +   A2 cos ω0t   is  the  solution  of  the  differential  equation    and  is  known  
as  its  general  solution,   where   y t   is  the  displacement  of  simple  harmonic  oscillator      ( SHO )  
at  time   t. 
 
Taking   A1   =   A cos φ   and   A2   =   A sin φ, 
 
         y t   =   A cos φ sin ω0t   +   A sin φ cos ω0t 
 
 ∴   y t    =   A sin ( ω0t  +  φ )   is  the  solution  of  the  differential  equation. 
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A   and   φ    are  the  constants  of  the  equation  whose  values  depend  upon  the  initial  position  
and  initial  velocity  of  the  system.  The  equation  gives  displacement  as  a  sinusoidal  function  
which  is  periodic.  Hence,  the  motion  of  the  object  represented  by  this  equation  is  periodic  on  
a  linear  path  about   y  =  0  between   y  =  - A   and   y  =  A.  Such  a  motion  is  known  as  simple  
harmonic  motion  ( SHM ). 
 
Definition  of  SHM: 
 
“The  periodic  motion  of  a  body  about  a  fixed  point,  on  a  linear  path,  under  the  

influence  of  the  force  acting  towards  the  fixed  point  and  proportional  to  the  
displacement  of  the  body  from  the  fixed  point,  is  called  a  simple  harmonic  motion.”      

 
The  body  performing  SHM  is  known  as  a  simple  harmonic  oscillator  ( SHO ). 
 
14.3  Amplitude,  Period,  Frequency,  Angular  frequency,  Phase 
 
Amplitude:  The  maximum  displacement  of  the  body  executing  SHM  on  either  side  of  the  

mean  position  is  called  the  amplitude  of  the  SHO. 
 
Phase:            θ   =   ω0t  +  φ   is  the  phase  at  time  t  of  SHO  performing  SHM  according  to  the  

equation    y t    =   A sin ( ω0t  +  φ ).   At   t  =  0,   θ  =  φ   which  is  known  as  initial  
phase,  epoch  or  phase  constant  of  the  given  SHM.  The  position  and  direction  
of  motion  of  SHO  at  any  time  can  be  known  from  its  phase. 

 
Period:          Displacement  of  an  SHO  at  instant   t   is    y t    =   A sin ( ω0t  +  φ ).   As  the  period  

of  sine  function  is   2 π   radian,  we  have 

                         y t    =   A sin ( ω0t  +  φ  +  2 π )   =   A sin 











+







 π
+ φ

0
        

ω
 2  t    ω 0  

                         ∴   T   =   
0

π
ω

 2    is  the  period  or  the  time  taken  to  complete  one  oscillation  by       

the  oscillator. 
 

                         Putting   ω0   =   
m
k ,          T   =    2 π 

m
k . 

 
This  is  the  period  for  any  SHM.   In  the  case  of  spring-block  system,  heavier  the  mass  more  
the  period  and  slower  the  oscillations.  Also,  if  the  spring  is  hard,  its  force  constant  k  is  
large,  the  period  is  less  and  oscillations  are  faster. 
 
Frequency  and 
Angular  frequency:    The  number  of  oscillations  performed  by  the   oscillator  in  1  second  is 

known  as  the  frequency   f0  of  the  oscillator.  Its  unit  is   s - 1  or  hertz  
( Hz )  in  honour  of  the  scientist  Hertz. 

Obviously,   f0   =   
T
1  

 

ω0   =    2 π f0   =   
T
 2 π    is  the  angular  frequency  of  the  oscillator.  Its  unit  is   rad / s. 
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14.4  Uniform  circular  motion  and  SHM 
 
Consider  a  particle  moving  with  a  constant  angular  speed   ω0   in  an  anticlockwise  direction  
on  a  circular  path  having  centre   O   and  radius   A  as  shown  in  the  figure. 
 
 
At  time  t  =  0,  its  angular  position  w.r.t.  the  
reference  line   OX   is   ∠ POX  =  φ. 
 
At  time   t  =  t,   having  undergone  angular  
displacement   ω0t   reaching   Q  from  P,   its  angular  
position  is   ∠ QOX  =  ω0t  +  φ. 
 
The  co-ordinates  of  point  Q  are 
 
x  =  A cos ( ω0t  +  φ )   and     …     …     …     ( 1 ) 
y  =  A sin (  ω0t  +  φ ).     …     …     …     …     ( 2 ) 
 
As  the  particle  moves  on  the  circular  path,  its  feet  
of  perpendiculars  on  X-   and   Y-   axes  move  as  
per  the  equations  ( 1 )  and  ( 2 )  and  their  motion  is  
simple  harmonic. 
 
Thus,  a  given  SHM  can  be  described  as  the  projected  motion  of  a  particle,  known  as  the  
reference  particle,  performing  an  appropriate  uniform  circular  motion  on  the  diameter  of  the  
circle  known  as  the  reference  circle.  The  radius  of  the  reference  circle  is  equal  to  the  
amplitude  of  the  corresponding  SHO  and  the  angular  speed  of  the  reference  particle  is  equal  
to  the  angular  frequency  of  the  SHO.  Also,  the  angular  position  of  the  reference  particle  w.r.t.  
the  reference  line  at  any  time  is  equal  to  the  phase  of  the  SHO  at  that   time.  
 
Combining  two  SHMs  with  phase  difference  of   π / 2  and  same  amplitude  results  in  uniform  
circular  motion  and  if  the  amplitudes  are  different,  the  motion  is  on  an  elliptical  path.  
Combining  SHMs  in  different  ways,  different  types  of  motion  can  be  obtained. 
 
14.5  Displacement,  velocity  and  acceleration  of  SHO 
 
Displacement:      The  equation  for  the  displacement  of   SHO   is    
 
y   =   A sin ( ω0t  +  φ ). 
 
Velocity: 
 
Differentiating  with  respect  to  time,  we  get  velocity, 
 

 v   =    
dt
dy    =   A ω0 cos ( ω0t  +  φ )     …     …     …     …     …     …     …     …     …   ( 1 ) 

 

      =    ± A ω0 )   t  ω ( sin    1 0
2 φ+-    =   ±  ω0 )   t  ω ( sin   A   A 0

222 φ+-  
 

      =    ±  ω0  22    y   A -  
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Velocity  of  SHO,  v,  is  positive  when  it  is  moving  along  positive  y-direction  and  negative  when  
it  is  moving  along  negative  y-direction. 
 
At   y  =  0  ( equilibrium  point ),    v  =  ±  A ω0   (  which  is  maximum  velocity ). 
 
At   y  =  ±  A  ( end  points ),          v  =  0. 
 
The  velocity  of  SHO  and  its  corresponding  reference  particle  are  the  same  every  time  the  
SHO  is  at  the  equilibrium  point. 
 
Acceleration: 
 
Differentiating  equation  ( 1 )  with  respect  to  time,  we  get  acceleration, 
 

a   =   
dt
dv    =   

2

2

dt
yd    =   - A ω0

2 sin ( ω0t  +  φ )   =   -  ω0
2 y 

 
At   y  =  0  ( equilibrium  point ),    a  =  0. 
 
At   y  = ±  A  ( end  points ),          a  =  m   ω0

2 A. 
 
The  acceleration  of  SHO  and  its  corresponding  reference  particle  are  the  same  every  time  the  
SHO  is  at  either  of  the  end  points. 
 
Note: 
 
The  velocity  of  the  SHO  can  also  be  found  by  
taking  the  component  of  linear  velocity   Aω0  of  
the  reference  particle  in  the  corresponding  
direction  ( here  Y-axis ),  i.e.,  A ω0 cos θ  as  shown  
in  the  figure. 
 
Similarly  the  component  of  acceleration   A  ω0

2  of  
the  reference  particle  in  the  corresponding  
direction  ( here  Y-axis )  is  A ω0

2 sin θ  which  is  the  
magnitude  of  acceleration  of  the  SHO. 
 
 
14.7  Simple  pendulum 
 
“ A  system  of  a  small  massive  body  suspended  by  a  light,  inextensible  string  from  a  rigid        

( fixed )  support  and  capable  of  oscillating  in  one  vertical  plane  only  is  known  as  a  simple  
pendulum.” 

 
Mass  of  the  pendulum,   m,     is  supposed  to  be  concentrated  at  the  centre  of  the  suspended  
body  called  bob  of  the  pendulum  ( figure  on  the  next  page ). 
 
The  distance  of  the  centre  of  the  bob  from  the  point  of  suspension  A  is  called  the  length       
( l )  of  the  simple  pendulum.  At  some  instant,  the  bob  of  the  pendulum  is  at  B  and  the  string  
makes  an  angle   θ   with  the  vertical. 
 
The  pendulum  oscillates  on  the  circular  arc  of  radius   l   in  a  vertical  plane  as  shown  in  the  
figure. 
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Two  forces  act  on  the  bob  of  the  pendulum. 
 
( 1 )  Weight  of  the  bob  =  mg,   in  the  downward  direction  and 
 
( 2 )  tension  in  the  string  T’,  in  the  direction  BA. 
 
The  torque  about  A  due  to  T’  is  zero  as  its  line  of  action  passes  
through  A.  The  torque  due  to  weight,  mg,  about  A  is 
 

          
→→

×
→

=τ g m          l    =   - l mg sin θ 
 

But,   τ   =   I α   =   m l 2α     and     α   =   
dt

0ωd
   =   2

2

dt

d θ  

∴   2

2

dt

d2 m θ  l    =    -  l mg sin θ     …     …     …     …     …     …     ( 1 ) 

 
For  small   θ   ( in  radian ),  linear  displacement  of  the  bob  on  the  curved  path  is  x  and 
 

sin θ   ≈   θ   =   
l
x  

  
Putting  this  value  of  sin θ  in  equation  ( 1 ),  we  get 
 

2

2

dt

) x ( d2 m    ll  /    =   - l mg  
l
x  

 

∴   
2

2

dt
xd    =   -  

l
g  x .         

 
This  is  the  differential  equation  of  SHM. 
 

∴   
l
g    =   ω0

2   =   
2

2

T
 4 π  

 

∴   T    =    2 π  
g

 l  

 
This  is  the  expression  of  the  period  of  the  simple  pendulum.  Its  value  does  not  depend  on  
the  mass  of  the  bob  of  the  pendulum. 
 
•    The  period  of  the  spring-block  type  of  SHO  does  not  change  when  taken  to  a  different  

planet  as  the  values  of   m and k   appearing  in  the  expression  of  its  period  do  not  change. 
 
•     The  period  of  simple  pendulum  increases  on  a  planet  where  the  value  of  ‘g’  is  less  and  

the  pendulum  clock  taken  there  loses  time,  whereas  its  period  decreases  on  the  planet  
where  the  value  of  ‘g’  is  more  and  the  pendulum  clock  gains  time  when  taken  to  that  
planet. 
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14.8  Damped  oscillations 
 
SHM  is  an  ideal  situation.  In  fact,  there  is  always  a  resistive  force  offered  by  the  medium.  
e.g.,  air  resistance  in  case  of  oscillating  pendulum  and  internal  frictional  forces  as  in  the  
case  of  a  vibrating  tuning  fork. 
 
Energy  lost  in  doing  work  against  the  resistive  and  frictional  forces  is  mostly  dissipated  in  

the  form  of  heat.  The  mechanical  energy  of  SHO  is  E  =  2 Ak  
2
1 ,  where  A  is  the  amplitude  of  

its  oscillations.  This  shows  that  the  amplitude  of  the  oscillator  decreases  gradually  due  to  
dissipation  of  its  energy.  Such  oscillations  are  called  damped  oscillations. 
 
It  is  experimentally  found  that  the  resistive  force  acting  on  the  oscillator  opposing  its  motion  
is  directly  proportional  to  the  velocity  for  small  velocities. 
 
∴   Fv   =   -  bv,     where   b  is  a  constant  called  the  damping  coefficient.  Its  unit  is   N-s / m. 
 
Two  forces  act  on  the  damped  oscillator. 
 

( 1 )   Restoring  force   =   -  ky   and   ( 2 )   resistive  force     =   -  bv   =   -  b 
dt
dy  

According  to  Newton’s  second  law,    m  
2

2

dt

yd    =   -  ky    -  b 
dt
dy  

∴   
2

2

dt

yd    +   
dt
dy 

m
b    +   

m
k  y   =   0     …     …     …     …     …     …     …     ( 1 ) 

This  is  the  differential  equation  for  damped  oscillations.  Its  solution    for   

















>   

2m
b    

m
k 

2
      

is     yt   =   A 2m
t b 

e
-

 sin ( ω’t  +  φ ),     where  angular  frequency  of  damped  oscillations,                            
 

       ω’   =   
2

 
2m
b    

m
k 






   -                 

 
Here,   A   and   φ   are  the  constants  
of  the  solution  and  their  values  
depend  on  the  initial  conditions. 
 

A t   =   A 2m
t b 

e
-

  is  the  amplitude  of   
the  damped  oscillator  at  time  t  
which  decreases  exponentially  with  
time. 
 
The  graph  of  displacement,               
yt → time  t   is  shown  in  the  figure  
where  the  broken  lines  show  the  
decrease  in  the  amplitude  with  time. 
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Putting   A t   =   A 2m
t b 

e
-

 ,   the  expression  for  mechanical  energy   of  damped  oscillator   is            
 

E t  =   2 Ak 
2
1 m

t b 
e

-
     for  small  damping  








<<  1    

2km 
b    which  shows  that  the  mechanical   

energy  also  decreases  exponentially  with  time.    
 
14.9  Natural  oscillations,   Forced  oscillations   and   Resonance 
 
The  oscillations  of  an  oscillator  in  the  absence  of  resistive  forces  are  known  as  natural  
oscillations  and  their  frequency  as  natural  frequency   ( f 0 ),  e.g.,  the  natural  angular  frequency  

of  the  simple  pendulum  is   
l
g     ω0 = .  An  oscillator  can  have  more  than  one  natural  

frequency. 
 
In  reality,  the  amplitudes  of  oscillations  decrease  exponentially  with  time  due  to  damping  
forces.  To  sustain  natural  oscillations,  some  external  periodic  force  must  be  applied  to  the  
oscillator.  The  oscillations  under  the  influence  of  some  external  periodic  force  are  known  as  
forced  oscillations. 
 
The  differential  equation  of  forced  oscillations   under  the  external  periodic  force,  F0 sin ωt,  
where   ω   is  the  frequency  of  the  external  force  is  given  by 
 

      m 
2

2

dt

yd    =    -  ky    -  b 
dt
dy    +   F0 sin ωt 

 

∴     
2

2

dt

yd    +  
dt
dy 

m
b    +   

m
k  y   =   

m
F0  sin ωt 

 

∴    
2

2

dt

yd    +   r 
dt
dy    +   ω0

2 y   =   a0 sin ωt         ( putting   
m
b   =  r,     

m
k   =  ω0

2   and   
m
F0   =  a0 ). 

 
This  is  the  differential  equation  of  forced  oscillation  in  the  presence  of  damping  and  its  
solution  is  given  as 
 

y  =  A sin ( ω t  +  α ),       where   A  =  

[ ] 2
1

22222
0

0

 ωr    ) ω  ω ( 

a

+  -

       and       α   =  tan - 1 
0
0

v
yω

. 

 
The  amplitude  of  the  oscillator  is  maximum  when  the  value  of   22222

0 ωr    ) ω  ω ( +  -   is  
minimum.  It  can  be  proved   mathematically  that  this  minimum  value  is  reached  when            

ω  =  
2

r    ω 
2

2
0 - .   This  phenomenon  is  known  as  resonance.  The  value  of   ω  for  which  

resonance  occurs  and  the  amplitude  becomes  maximum  is  known  as  the  resonant  angular  
frequency. 
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The  curves  for  amplitude  →  
0ω
ω   for  different  values  of   b  are  shown  in  the  figure  on  the  

next  page.  The  amplitude  becomes  infinite  for  b  =  0  which  is  an  ideal  condition.  For  different   
curves,  the  amplitude  is  not  maximum  

when  
0ω
ω  =  1,  but  it  is  maximum   when  it  

is  close  to  1  for  small  damping. 
 
Mechanical  systems  may  have  more than 
one resonant frequencies.  When  the  
frequency  of  the  external  periodic  force  is  
close  to  the  natural  frequency,  the  system  
oscillates  with  a  very  large  amplitude  and  
it  may  break  or  collapse.  This  is  the  
reason  why  soldiers  are  instructed  to  
march  out  of  pace  on  the  bridge.  While  
designing  a  bridge,  care  is  taken  so  that  
its  natural  frequency  is  not  close  to  the  
frequency  of  the  external  force  due  to  
gusts  of  wind. 
 
14.10  Coupled  oscillations 
 
The  figure  shows  two  pendulums  connected  by  an  elastic  
spring.  Obviously,  they  cannot  oscillate  independently  of  
each  other.  They  are  called  coupled  oscillators  (  more  
appropriately  coupled  pendula )  and  their  oscillations  are  
known  as  coupled  oscillations.  The  constituent  particles  of  
solids  also  undergo  coupled  oscillations. 
 
Oscillations  of  coupled  oscillators  are  complex  and  not  
always  simple  harmonic,  i.e.,  their  displacements   x1   and   
x2  cannot  be  expressed  in  the  form  of  sine  or  cosine  
functions.  But  by  suitable  transformation  of  the  co-ordinate  
system,  they  can  be  expressed  in  the  form  of  equations  of  
SHM  as  under. 
 
X1   =   A sin ( ω1t  +  φ1 )     …     …     …   ( 1 )     and      
X2   =   B sin ( ω2t  +  φ2 )     …     …     …   ( 2 ),                      
where  X1  =  x1   +  x2      and     X2  =   x1  -   x2 . 
 
ω1   and   ω2   are  normal  frequencies  and  
oscillations   given  by   X1   and   X2  with  these  
frequencies  are  the  normal   modes  of  vibrations  of  
the  coupled  oscillators.  This  oscillator  has  two  
normal  modes  as  only  two  co-ordinates  are  
present.  With  proper  selection  of  initial  conditions,  
the  coupled  oscillator  can  be  oscillated  in  any  one  
of  these  two  modes.   
 
If  at  t  =  0,   x1   =   x2 ,   i.e.,  both  the  oscillators  are  
given  equal  displacements  in  the  same  direction,  
then  B  =  0    from  equation  ( 2 ). 
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The  coupled  oscillator  will  oscillate  with  angular  frequency   ω1  =  
l
g    according  to  equation  

( 1 ).  As  shown  in  the  figure  ( previous  page ),  both  the  oscillators  undergo  equal  
displacements  in  the  same  direction  in  the  same  time.  Hence  the  length  of  the  spring  does  
not  change.  So  in  this  mode,  the  oscillators  oscillate  independently  of  each  other  as  if  the  
spring  is  not  present. 
 
 
Next,  if  at  t  =  0,   x1   =   - x2 ,   i.e.,  both  the  oscillators  are  
given  equal  displacements  in  mutually  opposite  directions  
and  released,  then  A  =  0  from    equation  ( 1 ).   
 
The  coupled  oscillator  will  oscillate  with  angular  frequency   

ω2  =  
m
2k    g +

l
   according  to  equation  ( 2 ). 

 
Both  these  types  of  oscillations  are  the  normal  modes  of  
oscillations  of  the  given  coupled  oscillator.  If  the  initial  
conditions  were  different  from  the  above  two  conditions,  
then  the  oscillations  of  each  oscillator  would  be  complex.  
However,  in  such  a  situation,  the  displacements  of  both  the  
oscillators  can  be  represented  as  a  linear  combination  of  
the  above  two  equations  as  the  function  of  time. 
 
 


