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2.1  Line  Integral  of  Electric  Field  

If  a  unit  positive  charge  is  displaced  by  
→→→→
dl  in  an  electric  field  of  intensity  

→→→→
E ,  work  done  is  

`given  by 

dW   =   
→→→→
E . 

→→→→
dl     

 
Line  integration  of  this  equation  gives  the  work  done  in  displacing  a  unit  positive  char ge  
from  P  to  Q  as 
 

W   =   
→→

⋅∫ dl
Q

P

E    

This  work  depends  only  on  the  initial  and  f inal  positions  of  the  unit  charge  and  not  o n  the  
path  followed  by  it.  Hence,  work  done  in  mo ving  a  charge  along  a  closed  path  is  equal  to  
zero.  Thus  electric  field  like  gravitational  field  is  a  conservative  field. 
 
2.2  Electrostatic  Potential  
 
The  work  done  by  the  electric  field  in  movi ng  a  unit  positive  electric  charge  from  an  
arbitrarily  selected  reference  point  θθθθ,  ,  ,  ,  which  may  be  inside  or  outside  the  field,  t o  point  P  is  
given  by   
 

WP   =   
→→

⋅∫ dl
P

E   
θθθθ

 

 
For  the  selected  reference  point,  the  value  of  WP  depends  only  on  the  position  of  point  P  
and  not  on  the  path  followed  in  going  from  reference  point  to  point  P. 
 
Let   θθθθ  be  at  infinity.  The  electric field  at  infin ite  distance  due  to  finite  charge  distributio n  will  
be  zero.  The  electric  field  due  to  an  infin itely  long  charged  plane  at  infinite  distance   will  not  
be  zero.  However,  in  practice,  one  cannot  ha ve  such  a  charge  distribution. 
 
The  work  done  in  a  direction,  opposing  the  electric  field  in  bringing  a  unit  positive  c harge  
from  an  infinite  position  to  any  point  in  t he  electric  field  is  called  the  static  elect ric  potential  
( V )  at  that  point. 
 
 Its  sign  is  taken  as  negative  as  the  work  done  is  in  a  direction  opposite  to  the  ele ctric  field.  
Thus,  work  done  in  bringing  a  unit  positive  charge  from  infinity  to  points  P  and  Q  wil l  be   
                            

                             V ( P )   =    - 
→→→→→→→→

∞∞∞∞
dl

P
E    ⋅∫      and     V ( Q )     =    - 

→→→→→→→→

∞∞∞∞
dl

Q
E    ⋅∫  

∴      V ( Q )   -   V ( P )     =   - 
→→→→→→→→

∞∞∞∞
dl

Q
E    ⋅∫    +   

→→→→→→→→

∞∞∞∞
dl

P
E    ⋅∫         =     

→→→→→→→→

∞∞∞∞
dl

P
E    ⋅∫    +    

→→→→→→→→
⋅⋅⋅⋅

∞∞∞∞
∫∫∫∫ dl
Q

E      

                                           =   -  
→→→→→→→→

⋅⋅⋅⋅∫∫∫∫ dl
Q

P
E    

This  equation  gives  the electric  potential  of  point  Q  with  respect  to  point  P.  Its  unit  is  volt   

( joule //// coulomb )  denoted  by  V  and  its  dimensional  formula  is  M 1L2T    ---- 3A ----    1. 
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2.3  Electric  Potential  Energy  and  Potential  Differ ence  
 
A  stationary  electric  charge  at  infinity  has  no  energy  ( kinetic  or  potential )  associated   with  it.  
If  a  unit  positive  charge  is  brought  from  i nfinity  to  an  arbitrary  point  P  in  the  elec tric  field  
such  that  it  has no  velocity  at  that  point  then,  the  field  being  conservative,  work  done   on  it  
is  stored  with  it  in  the  form  of  potential  energy  and  is  called  the  electric  potential  of  the  
point  P  and  is  given  by   
 

V ( P )   =    - 
→→→→→→→→

∞∞∞∞
dl

P
E    ⋅∫  

 
If  the  electric  charge  is  of  magnitude  q  in stead  of  unity,  then  the  work  done  is  calle d  the  
potential  energy  of  the  charge  q  at  point  P   and  is  given  by 
 

U ( P )   =   qV ( P )   =    - 
→→→→→→→→

⋅⋅⋅⋅∫∫∫∫
∞∞∞∞

dl
P

Eq    

 
The  original  electric  field  or  the  arrangemen t  of  charges  in  the  field  should  remain  una ffected  
by  bringing  the  electric  charge  q  or  the  un it  charge  from  an  infinite  distance  to  the  point  in  
the  electric  field. 
 
Generally,  one  needs  to  calculate  the  potenti al  difference  or  the  difference  in  potential  energy  
of  charge  q  when  it  is  moved  from  P  to  Q  which  is  given  by 
 

U ( Q )   -   U ( P )     =      - 
→→→→→→→→

⋅⋅⋅⋅∫∫∫∫ dl
Q

P
Eq    

 
It  should  be  noted  that  this  potential  energ y  or  the  potential  energy  change  is  associat ed  not  
only  with  the  charge  q  but  also  with  the  e ntire  charge  distribution  which  gives  rise  to   the  
electric  field. 
 
2.4  Electric  Potential  due  to  a  Point  Charge    
 

The  electric  field  at  any  point  A  having  
→→→→
r  as  its  position-

vector  due  to  a  point charge  q  placed  at  th e  origin  of  the  
co-ordinate  system  is  given  by 
 

^
r 

r

kq
   

^
r 

r

q
  

 4
1

      ) r ( E
22

     ==
→→

0000εεεεππππ  

 
The  electric  potential  at  point  A  as  shown  in  the  figure  is  
given  by 
 

V ( A )   =   
→

∫
→

dl•
A

E    -
∞∞∞∞
             

Moving  in  the  radial  direction  from  infinity  to  point  A,   
^
r  dr      dl =

→
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∴     V ( A )   =    ) 
^
r dr ( 

^
r 

r

kq
   

2
⋅∫ 

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





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∞∞∞∞
        ----    =      

r

dr
    kq

2∫
A

∞∞∞∞
        ----   =    - kq  
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1

  
∞∞∞∞

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∴     V ( A )   =   V ( r )   =   
r
q

  
 4

1
 0000εεεεππππ  

 
The  electric  potential  is  positive  if  q  is  positive  and  negative  if  q  is  negative.  Henc e,  for  
negative  charge  negative  sign  should  be  used  for  q  in  the  above  equation. 
 
2.5  Electric  Potential  in  the  Field  of  an  E lectric  Dipole  
 
Let  the  two  charges  -q  and  +q  be  placed  at   A  and  B  
respectively  with  a  distance  2a  between  them.  
 
Let  P  be  a  point  at  a  distance  r  from  the   centre  of   
this  dipole  and  making  an  angle  θ  θ  θ  θ  with  its  direction   

such  that  AP  =  r     ----
   and   BP  =  r +. 

 
The  electric  potential  at  P  is  given  by 
 

V ( r )   =   
++++0000εεεεππππ r
q

  
 4

1
     -     

-r
q

  
 4

1
 0000εεεεππππ      

             =   








+
+

r r
rr

  
 4

q

-
  -

 
   -

0000εεεεππππ  

 

If   r  > >  a,  then   r +  ≈≈≈≈   r ----   ≈≈≈≈   r     and     r ----   -  r+   ≈≈≈≈   2a cos θθθθ    
    
As  the  atomic  dipoles  are  of  very  small  mag nitude,  this  approximation  holds  good. 
 

∴    V ( r )   =   












2r

 cos 2a
  

 4
q
 

θ

0000εεεεππππ     =   
2r

θ cos p
  

 4
1
 0000εεεεππππ           ( Q  p  =  2aq ) 

As   p cos θ   θ   θ   θ   =   
^
r  p ⋅⋅⋅⋅

→→→→
,         V (

→→→→
r )   =   

2r

^
r p

  
 4

1  
 

⋅⋅⋅⋅
→→→→

0000εεεεππππ           ( for  l 
→→→→
r l  > >  2a ) 

 

Note:    ( 1 )    If  q  →→→→  ∞∞∞∞            and    a  →→→→  0   in  p = 2qa,  then  the  dipole  is  called  a   point  dipole. 
 
            ( 2 )  The  above  equation  gives  the   exact  value  of  the  electric  potential  for  a  point   
                     dipole  and   an  approximate  value  for  a  dipole  system  other  than  a  poi nt  dipole. 

            ( 3 )   For  any  point  along  the  ax is  of  the  dipole,  θ θ θ θ = 0  or  π  π  π  π  and   V  =  
2r

p
  

 4
1

   0000εεεεππππ±±±± . 

            ( 4 )   For  a  point  along  the  equa tor  of  the  dipole,  θ  θ  θ  θ  =  π π π π //// 2    and   V  =  0. 
 
            ( 5 )  In  the  case  of  a  dipole,  t he  electric  potential  varies  as  1 / / / / r 2  and  not  as  1 / / / / r  as  in  

the  case  of  a  point  charge. 
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2.6  Electric  Potentials  due  to  Different  Type s  of  Charge  Distributions   
    

2.6  ( a )  Discrete  Distribution  of  Charges:  
 
The  point  electric  charges   q 1,  q2,  …  q n  have  

position  vectors  
→→→→→→→→→→→→
n21 r  ...  ,r   ,r   respectively  with  

respect  to  the  origin. 
 
The  total  electric  potential  at  point  P  havi ng  position  

vector  
→→→→
r  due  to  the  entire  charge  distribution  is  

equal  to  the  algebraic  sum  of  the  electric  potential  
due  to  each  of  the  charges  of  the  system  a nd  is  
given  by 
 
V   =   V1  +  V2  +  …  +  Vn 
 

     =   



















++++++++
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nr  r 

q
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q
       

r  r 

q
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kq
  

n

1 = i
    =    )r (V 

i

i

  -

   ∴∴∴∴ →→∑
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2.6  ( b )  Continuous  Distribution  of  Charge:       
 

Let   ρ ρ ρ ρ ( 
→→→→
'r )   =   volume  charge  density  for  continuous   

charge  distribution  in  some  region. 
              dτ τ τ τ ’   =   small  volume  element  having  position  

vector,  
→→→→
'r  

 
The  electric  potential  due  to  some  volume  el ement  at  

some  point  P  having  position  vector,  
→→→→
r ,  is  given  by 

 

dV   =     

 r'  r

'd  )r' ( ρ
  

 4
1

  -
 

ll  
→→→→→→→→

→→→→
ττττ

0000εεεεππππ  

 
Integrating,  we  get  the  electric  potential  at   the  point  P  due  to  entire  charge  of  the  system  as 
 

V ( 
→→→→
'r )   =      

 r'  r

'd  )r' ( ρ
     

 4
1

V   -
 ∫∫∫∫ →→→→→→→→

→→→→

0000

ττττ
εεεεππππ

ll  
 

For  constant  charge  distribution,  ρ ρ ρ ρ ( 
→→→→
'r )   =   ρρρρ   can  be  taken  as  constant.  
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2.6  ( c )  Uniformly  Charged  Spherical  Shell:  
 
For  a  spherical  shell  of  radius  R  carrying  charge  q  on  its  surface,  the  electric  potent ial  at  a  
point  outside  the  shell  at  a  distance  r  fro m  its  centre  can  be  calculated  by  treating  the  entire  
charge  of  the  shell  as  if  concentrated  at  i ts  centre  and  is  given  by 
 

V   =   
r
q

  
 4

1

0000εεεεππππ    
          ( r  ≥  R ) 

 
The  electric  field  inside  the  sphere  is  equa l  to  zero.  So  the  electric  potential  will  b e  the  same  
for  all  points  inside  the  spherical  shell  an d  its  value  will  be  equal  to  the  electric  potential  on  
the  surface  of  the  shell.  Thus,  the  electric   potential  at  the  surface  of  the  spherical  shell  and  
inside  will  be  constant  and  is  given  by 
 

V   =   
R
q

  
 4

1

0000εεεεππππ    
          ( r  ≤  R ) 

 
2.7  Equipotential  Surfaces  
 
If  the  electric  potential  at  every  point  of  any  imaginary  surface  in  an  electric  field  is  the  
same,  then  such  a  surface  is  called  an  equi potential  surface. 
 
As  the  electric  potential  at  a  distance  r  d ue  to  a  point  charge  q  is  given  by   
 

V   =   
r
q

  
 4

1

0000εεεεππππ    
,   

 
all   concentric  spherical  surfaces  with  the  c harge  q  at  the  centre  are  equipotential  surf aces. 
 
The  electric  intensity  vector  at  any  point  i s  always  perpendicular  to  the  equipotential  s urface  
passing  through  that  point.  This  can  be  prov ed  as  under. 
 

Work  done  for  small  displacement  
→→→→
dl  of  a  unit  positive  charge  along  the  equipot ential  surface  

in  a  direction  opposite  to  the  electric  fiel d   

 =   - 
→→→→→→→→

⋅⋅⋅⋅ dl E    =   potential  difference  between  the  two  po ints 
       
                       =   0   ( as  the  points  a re  on  equipotential  surface ) 

∴    ( E )  ( dl )  cos θθθθ            =   0,   where  θ  θ  θ  θ  is  the  angle  between  
→→→→
E  and   

→→→→
dl . 

 
Since   E   ≠  0   and   dl   ≠   0,    cos θθθθ   =   0 
 
∴    cos θθθθ   =   π π π π //// 2 

which  shows  that  
→→→→
E  and   

→→→→
dl  are  perpendicular  to  each  other.  As  

→→→→
dl  is  tangential  to  the  

surface  of  the  sphere,  
→→→→
E   is  perpendicular  to  the  spherical  surface  w hich  is  equipotential. 

For  uniform  electric  field,  equipotential  surf aces  will  be  planes  perpendicular  to  the  ele ctric  
field  lines. 
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2.8  The  Relation  between  Electric  Field  and  E lectric  Potential  
 
The  electric  potential  difference  between  two  close  points  P  and  Q  is  given  by 
 

     dV   =   - 
→→→→→→→→

⋅⋅⋅⋅ dl E   
 

If   
→→→→
E   =   Ex 

^
i    and   

→→→→
dl   =   

^
k dz    

^
j dy    

^
idx ++++++++ ,   then 

 

     dV   =   - ( Ex 
^
i  ) . (

^
k dz    

^
j dy    

^
idx ++++++++ )          ∴    dV   =   - Ex dx          and     

dx
dV

   =   - Ex 

 
Similarly,  if  the  electric  field  exists  along   the  Y  and  Z  directions,  then 
 

dy
dV

   =   - Ey     and              
dz
dV

   =    - Ez 

 
If  the  electric  field  vector  has  all  the  th ree  components  ( x, y, z ),  then  the  relation  between  
the  electric  potential  and  the  electric  field   can  be  given  as 
 

x
V

∂∂∂∂
∂∂∂∂

   =   -    Ex,     
y
V

∂∂∂∂
∂∂∂∂

   =   - Ey     and     
z
V

∂∂∂∂
∂∂∂∂

   =   - Ez     or 

 
→→→→
E     =   - (

x
V

∂∂∂∂
∂∂∂∂ ^

i   +   
y
V

∂∂∂∂
∂∂∂∂ ^

j    +   
z
V

∂∂∂∂
∂∂∂∂ ^

k  ) 
 

Here   
x
V

∂∂∂∂
∂∂∂∂

,   
y
V

∂∂∂∂
∂∂∂∂

   and   
z
V

∂∂∂∂
∂∂∂∂

  are  the  partial  derivatives  of  V ( x, y, z )    with  respect  to  x,  y  and  z  

respectively.   
 
While  taking  the  partial  derivative  of  V ( x,  y, z )  with  respect  to  x,  the  remaining  var iables  y  
and  z  are  taken  constant.  Such  a  derivative  of  V  is  called  its  partial  derivative  with  respect  to  

x  and  is  denoted  by  
x
V

∂∂∂∂
∂∂∂∂

. 

In  general,  if  the  electric  field  exists  alo ng  the  
→→→→
r   direction,  then    

dr
dV

   =   - Er. 

The  electric  field  is  a  conservative  field  a nd  the  above  equations  can  only  be  used  for   a  
conservative  field. 

 

2.9  Potential  Energy  of  a  System  of  Charges  
 
Work  done  in  bringing  electric  charges  from  infinity  to  their  respective  positions  in  a  system  
of  charges  gets  stored  in  the  form  of  elect ric  potential  energy  of  the  system  of  charge s. 
 
The  potential  energy  of  a  system  of  two  cha rges  q 1  and  q 2  is  given  as 
 

U12  =  
12

21
r

qkq
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If  a  third  charge  q 3  is  introduced  in  the  system,  then  the  pote ntial  energy  of  the  system  of  
three  charges  will  be   
 
U  =  U12  +  U13  +  U23 
 
In  general,  if  the  system  is  made  up  of  n  electric  charges, 
 

U   =   ij
1  i
j 

U  
n

 i
====
<<<<

∑∑∑∑    =   
ij

ji

1  i
j 

r

qkq
  

n

 i
====
<<<<

∑∑∑∑  

 
2.9  ( a )  Potential  Energy  of an  Electric  Dipo le  in  a  Uniform  Electric  Field  
 
The  potential  energy  of  an  electric  dipole  A B  in  a  

uniform  electric  field  ( 
→→→→
E )  as  shown  in  the  figure  is  

equal  to  the  algebraic  sum  of  the  potential  energy  
of  the  two  charges  of  the  dipole. 
 
Taking  the  electric  potential  near  the  negati ve  
charge  to  be  zero,  the  potential  energy  of  the  dipole  
will  be  equal  to  the  potential  energy  of  th e  positive  
charge.   
   
 
Let   ∆ V   be  the  change  in  electric  potential  as  w e  move  from  A  to  B. 
 
∴    ∆ V   =   - E ∆ x   =   - E ( AC )   =   - E ( 2a cos θ θ θ θ ) 
 
∴    the  potential  energy  of  electric  charge  q  at  point  B  is 
 

U   =   q ∆ V   =   - E ( q.2a ) cos θθθθ   =   - E p cos θθθθ   =   - 
→→→→

⋅⋅⋅⋅
→→→→

p E   
 

( i )     When  the  electric  dipole  is  parallel   to  the  field,  - 
→→→→

⋅⋅⋅⋅
→→→→

p E   =  - pE  which  means  that  the  
dipole  has  minimum  potential  energy  ( as  it  is  more  negative )  which  is  also  the  
equilibrium  position  of  the  dipole. 

 
( ii )    If   θ  θ  θ  θ  =  ππππ,  the  dipole  has  maximum  potential  energy,  p E,  and  is  in  an  unsteady  position. 
 
( iii )   When  the  electric  dipole  is  perpendi cular  to  the  field  ( θ  θ  θ  θ  =  π π π π / / / / 2 ),  the  potential  energy  of   

the  dipole  is  zero.  
 
2.10  Conductors  and  Electric  Fields  
 
When  a  conducting  material  is  placed  in  a  u niform  
electric  field  as  shown  in  the  figure,  free  electrons  
migrate  in  a  direction  opposite  to  the  elect ric  field   
and  get  deposited  on  one  side  of  the  metal  surface  
while  the  positive  charge  gets  deposited  on  the  other  
side  of  the  conductor.  This  produces  an  elec tric  field  
inside  the  conductor  and  the  migration  of  ch arges  
stops  when  the  internal  electric  field  become s  equal  to  the  external  field. 
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If  we  draw  a  Gaussian  surface  inside  the  co nductor  as   shown  in  the  figure,  then  since  the  
electric  field  on  it  is  zero,  the  net  elect ric charge  enclosed  by  it  is  also  zero. 
 
The  important  conclusions  are: 
 
( 1 )     Stationary  electric  charge  distributio n  is  induced  on  the  surface  of  the  conducto r. 
( 2 )     Both  the  electric  field  and  the  net   electric  charge  inside  the  conductor  are  ze ro. 
( 3 )     At  every  point  on  the  outer  surface   of  the  conductor,  the  electric  field  is  pe rpendicular  

to  the  surface.  This  is  so  because  the  elec tric  charge  on  the  surface  is  stationary  
which  means  that  no  tangential  force  acts  on   it,  thus  proving  that  the  electric  field  o n  
the  surface  has  no  tangential  component.     

 
Consider  another  example  of  a  hollow  conducto r  
placed  in  an  external  electric  field. 
 
Here  also,  the  electric  charges  deposit  on  t he  outer  
surfaces  and  the  electric  field  inside  is  ze ro  as  
there  is  no  charge  inside.  This  phenomenon  i s  
called   Electro-static  Shielding.  When  a  car  is  struck  
by  lightning,  the  person  sitting  inside  is  s aved  from  
lightning  as  the  car  is  hollow  and  acts  lik e  an  
electrostatic  shield. 
 
Electric  field  inside  a  charged  conductor  whi ch  is  NOT  in  an  electric  field  is  also  zer o. 
Consider  a  Gaussian  surface  close  to  the  sur face  of  the  
conductor  as  shown  by  broken  line  in  the  fi gure.  The  line  
integration  of  the  electric  field  along  the  Gaussian  surface  
being  zero,  the  net  electric  charge  enclosed  by  it  is  also  
zero.  This  shows  that  in  a  charged  conductor ,  the  electric  
charge  gets  distributed  on  the  outer  surface  of  the  
conductor. 
 
As  the  electric  charges  are  stationary,  the  direction  of  the  
electric  field  will  be  perpendicular  to  the  surface  of  the  
conductor  as  shown  in  the  figure  and  its  ma gnitude  will  be  

0000εεεε
σ

. 

 
To  explain  it,  consider  a  pillbox  shaped  Gau ssian  surface  on  the  surface  of  the  conducto r  as  
shown  in  the  above  figure. 
 
The  charge  enclosed  by  the  Gaussian  surface   =   A . σσσσ    
The  total  flux  passing  through  this  surface         =   A E 

∴    by  Gauss’s  law,    A E   =   A 
0000εεεε
σ

         ∴    E    =   
0000εεεε
σ

 

If   σ   σ   σ   σ   is  not  uniform  along  the  surface,  its  proper   value  at  the  point  should  be  used  to  
calculate  value  of  E  at  that  point. 
 
If  a  positive  electric  charge  is  placed  in  the  cavity  of  the  
conductor  as  shown  in  the  adjoining  figure,  it  induces  
charges  on  the  inner  and  outer  surfaces  of  the  conductor  in  
such  a  way  that the  field  will  be  zero  in  the  interior  portion  of  
the  conductor. 
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2.11  Capacitors  and  Capacitance  
 
When  positive  electric  charge  on  an  isolated  conducting  sphere  shown  in  figure  1  is  grad ually  
increased,  electric  potential  on  its  surface  and  electric field  in  its  vicinity  increase.  When  the  
electric  field  becomes  strong,  it  ionizes  the   surrounding  air  which  causes  charge  on  the  
sphere  to  leak  and  the  charge  on  the  sphere   cannot  be  increased  further.  During  this  
process,  the  ratio  of  charge  ( Q )  and  the  electric  potential  ( V )  of  the  sphere remains   
constant.  This  ratio,  Q //// V,   is  called  its  capacitance  ( C ). 

                            Fig.  1                                        Fig.  2                                                 Fig.  3 
 
 
To  increase  capacitance  C  of  the  sphere,  ano ther  isolated  conducting  sphere  is  brought  ne ar  
it  on  which  charge  is  induced  as  shown  in  figure  2.  On  earthing,  the  positive  charge  g ets  
neutralized  as  shown  in  figure  3.  The  negati ve  charge  induced  on  the  second  sphere  reduc es  
the  electric  potential  of  the  first  sphere  t hereby  increasing  its  charge  storage  capacity.   The  
ratio  Q //// V  of  the  charge  on  the  first  sphere  and  t he  potential  difference  between  the  two  
spheres  is  still  constant  and  is  called  the  capacitance  C  of  the  system.  The  value  of  C  
depends  on  the  dimensions  of  the  spheres,  th e  distance  between  the  two  spheres  and  the  
medium  between  them. 
 
The  arrangement  in  which  two  good  conductors  of  arbitrary  shape  and  volume,  are  arranged  
close  to  one  another,  but  separated  from  eac h  other,  is  called  a  capacitor. 
 
The  conductors  are  known  as  plates  of  the  c apacitor.  Positively  charged  conductor  is  call ed  
the  positive  plate  and  the  negatively  charged   conductor  the  negative  plate.  Both  the  plat es  
are  equally  charged.  The  charge  on  the  posit ive  plate  is  called  the  charge  ( Q )  of  the   
capacitor  and  taking  the  potential  difference  between  the  two  plates  as  V,  capacitance  of   the  
capacitor  is  C  =  Q / / / / V. 
 
The  S.ΙΙΙΙ.  unit  of  capacitance  is  coulomb / / / / volt which  is  also  called  farad  ( F ) named  a fter  the  

great  scientist  Michael  Faraday.  The  smaller  units  of  farad  are  microfarad  ( µ µ µ µ F  =  10 ----    6 F )  and  

picofarad  ( pF  =  10 ----12 F ). 
 
2.12  Parallel  Plate  Capacitor  
 
This  type  of  capacitor  is  made  by  two  metal lic  plates  having  identical  area  and  kept  pa rallel  
to  each  other.  The  distance  ( d )  between  th e  two  plates  is  kept  less  as  compared  to  t he  
dimensions  of  the  plates  to  minimize  non-unif orm  electric  field  due  to  the  irregular  dist ribution  
of  charges  near  the  edges.   
 
Let  Q  =  electric  charge  on  the  capacitor 
∴     σ  σ  σ  σ  =  Q / / / / A  =  surface  charge  density 
 
As  d   is  very  small,  the  plates  can  be  con sidered  as  infinitely  charged  planes  and  the  electric  
field  between  the  plates  can  therefore  be  co nsidered  uniform. 
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The  electric  fields,  E 1  and  E2,  between  the  plates  due  to  positively  charg ed  and  negatively  
charged  plates  respectively  are  equal  in  magn itude  and  direction.  The  direction  of  both   E1  

and  E2  is  from the  positively  charged  plate  to  the   negatively  charged  plate.   
 
The  resultant  electric  field  between  the  plat es  is,  therefore, 
 

E   =   E1  +  E2   =   
00 ε

σ

ε

σ

 2
      

 2
++++    =   

0ε

σ

 
   =   

A
Q

0ε
  ( 

A

Q  σ  ====Q ) 

 
Outside  the  plates,  E 1  and  E2  being  oppositely  directed  cancel   
each  other  resulting  in  zero  electric  field  in  this  region. 
 
The  potential  difference  between  the  two  plat es  is 
 

V   =   E d   =   
A

Q

0ε
d        ∴    the  capacitance  of  the  capacitor,   C   =   

V
Q

   =    
d

A ε0  

 
2.13  ( a )  Series  Connection  of  Capacitors  
 
The  end  to  end  connection  of capacitors  as  s hown 
In  the  figure  is  called  the  series  connectio n  of   
capacitors. 
 
Equal  charge  Q  deposits  on  each  capacitor,  b ut  the  
p.d.  between  their  plates  is  different  depend ing  on  
the  value  of  its  capacitance. 
 
∴∴∴∴    V   =   V1    +    V2     +  …. +  Vn 

             =  
nC

Q
   ....

2C

Q
  

C

Q           
1

++++++++++++    

 ∴∴∴∴   
Q

V
 =  

nC

1
   ....

2C

1
  

C

1           
1

++++++++++++    When  all  capacitors  connected  in  series  ar e  replaced  by  a  

single  capacitor  of  capacitance  C  such  that  the  charge  deposited  on  it  is  Q  with  the  s ame  
voltage  supply,  then  such  a  capacitor  is  cal led  their  equivalent  capacitor. 
 

∴∴∴∴   
Q

V
 =  

C

1
             ∴∴∴∴    

C

1
   =   

nC

1
   ....

2C

1
  

C

1           
1

++++++++++++  

 
The  value  of  C  is  smaller  than  the  smallest   of   C1,  C2,   ….   
Cn. 
 
2.13  ( b )  Parallel  Connection  of  Capacitors  
 
The  connection  of  capacitors  in  which  positiv e  plates  of  all  
capacitors  are  connected  to  a  single  point  a nd  negative  plates  
to  another  single  point  in  a  circuit  is  cal led  parallel  
connection  of  capacitors  as  shown  in  the  fig ure.  In  such  a  
connection,  charge  accumulated  on  each  of  the   capacitors  is  
different  depending  on  the  value  of  its  capa citance,  but  the  
p.d.  across  all  is  the  same. 
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Thus,  total  charge   Q   =   Q 1  +  Q2  +  Q3  +  …. 
                                          =  ( C1 +  C2  +  C3  +  ….  ) V    
 
When  all  capacitors  connected  in  parallel  are   replaced  by  a  single  capacitor  of  capacitan ce  C  
such  that  the  charge  deposited  on  it  is  Q  with  the  same  voltage  supply,  then  such   
a  capacitor  is  called  their  equivalent  capaci tor.  Its  value  is 
  
C   =   Q / / / / V   =   C1 +  C2  +  C3  +  …. 
 
2.14  Energy  Stored  in  a  Charged  Capacitor  
 
The  work  done  in  charging  the  capacitor  gets   stored  in  it  in  the  form  of  potential  ene rgy. 

The  electric  field  on  one  plate  due  to  char ge  Q  and  charge  density  σσσσ  on  it   =    
0ε

σ

 2
 

The  potential  energy  of  one  plate  at  a  dist ance  d  from  the  other  plate 
 
UE   =   ( electric  p.d.  between  them )  ×  ( electr ic  charge  on  the  second  plate ) 
 

       =   Q    
 2

d

0ε

 σ ××××      ( taking  reference  potential  on  the  first   plate  as  zero ).   

Putting   σ    σ    σ    σ   =   
A
Q

, 

UE   =   Q 
 2
d

 
A
Q  

ε
 

0
⋅⋅⋅⋅⋅⋅⋅⋅    =   

d A  2
Q

 ε0

2

////⋅⋅⋅⋅
   =   

C 2
Q2

 

 
Putting   Q  =  CV     or     C  =  Q / / / / V,   we  get 
 

UE   =   
C 2

Q2
   =   2CV 

2
1

  =   
2
1

 QV 

 
Energy  Stored  in  a  Capacitor  in  terms  of  En ergy  Density  of  Electric  Field  
 
If    A   =   area  of  the  plates  of  the  capac itor 
       d   =   separation  between  the  plates 
 
then  energy  density  of  electric  field  in  the   capacitor 
 ρρρρE      =   energy  stored  per  unit  volume 

            =   
d A

UE    =   
dA 

CV
  

2
1 2

   =   
dA 

V
 

d

A
  

2
1

2
0  
 ε ⋅⋅⋅⋅    =   

2

0
d

V
  

2
1  ε 








 

             =   ) E  =  
d

V
  (   E2

0
 ε  

2
1

Q  

The  above  equation  gives  energy  stored  in  a  capacitor  in  terms  of  the  energy  stored  in  the  
electric  field  between  the  two  plates.  This  is  a  general  result  which  holds  true  for  an   electric  
field  due  to  any  charge  distribution. 
 
2.15  Dielectric  Substances  and  their  Polarizat ion  
 
••••     A  non-conducting  material  is  called  a  di electric. 
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••••     The  dielectric  does  not  possess  free  ele ctrons  like  a  conducting  material. 
 
••••     Introduction  of  a  dielectric  between  the  two  parallel  plates  of  a  capacitor  considera bly  

increases  the  capacitance  of  a  capacitor. 
 
••••     Dielectric  materials  are  of  two  types:  (  1 )  Polar  and  ( 2 )  Non-polar. 
 
••••     The  atoms  of  a  dielectric  ( like  HCl,  H 2O )  that  have  permanent  dipole  moment  is  cal led  a  

polar  dielectric. 
 
••••     The  atoms  of  a  dielectric  ( like  H 2,  O2 )  that  do  not  have  permanent  dipole  moment  is  

called  a  non-polar  dielectric. 
      
2.15  ( a )  Non-polar  Atoms  ( or  Molecules )  p laced  in  a  Uniform  Electric  Field:  
 
The  centres  of  the  positive  and  the negative  charges  coincide  in  a  non-polar  dielectric  a tom  
or  molecule.  So  it  does  not  have  permanent  dipole  moment. 
 
If  such  an  atom  or  molecule  is  placed  in  a   uniform  electric   

field  (
→→→→
E ),  the  centres  of  the  positive  and  negative  electric  

charges  get  separated  due  to  electric  force  acting  on  them  in  
opposite  directions.  This  is  known  as  polariz ation  of  the  atom.  
If  the  electric  field  is  not  very  strong,  t hen  the  dipole  moment,    
→→→→
p ,  of  the  induced  dipole  is  directly  proporti onal  to  

→→→→
E . 

 
→→→→→→→→

==== E α      p ,     where  constant  αααα  is  called  the  atomic  ( or  molecular )  polar izability. 
 
2.15  ( b )  Dielectric  in  a  Capacitor  
 
A  dielectric  slab  of  polar  material  is  place d  between  the  parallel  
plates  of  a  capacitor  as  shown  in  the  figur e.  The  torque  due  to  
the  electric  field  acting  on  atomic  dipoles  aligns  them  in  the  
direction  of  the  electric  field.  In  a  solid  dielectric  material,  its  
atoms  perform  oscillatory  motion,  whereas  in  liquid  or  gas  
dielectric  materials,  they  perform  linear  moti on.  The  dipoles  are  
in  equilibrium  and  completely  aligned  as  show n  in  the  figure  

when  its  electric  potential  energy,   
→→→→→→→→

⋅⋅⋅⋅ E p   - ,  equals  the  thermal  

energy,   T k
2

3 ,  due  to  absolute  temperature  T. 

It  can  be  seen  in  the  figure  that  the  atom ic  dipoles  line  up  such  that  the  opposite  p olarity  
face  each  other  canceling  each  other’s  effect .  The  net  charge  of  the  system  is  the  char ge  of  
the  capacitor  plates.  The  dipole  closer  to  t he  positive  plate  has  negative  charge  lined  up  
facing  it  and  vice  versa.  These  induced  elec trical  charges  are  called  bound  charges. 
 
The  electric  field  between  the  capacitor  plat es  is 
 

Ef   =   
0000εεεε
fσ                 ( 1 )   in  the  absence  of  the  dielectric  medium and  is     

E    =   
0000εεεε

bf σ  -  σ
    ( 2 )  in  the  presence  of  the  dielectric  slab,    
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where  fσ  is  the  free  ( controllable )   surface  charge  density  on  the  surface  of  the  capacitor  

plates  and   bσ   is  the  bound  surface  charge  density  on  the   surface  of  the  dielectric  slab.  bσ   

is  taken  negative  as  the  surface  charges  of  the  dielectric  slab  have  opposite  polarity  a s  
compared  to  the  charges  of  the  capacitor  pla tes. 
 

bσ   ingminDeter  

 
The  dipole  moment  of  the  dielectric  slab  hav ing  surface  area  A  and  length  L  is   
 

Pt   =   bσ A L     ∴    
L A

Pt    =   
V

Pt    =   bσ    =   P, 

 
where   P t / / / / V   is  the  dipole  moment  of  the  dielectric  s lab  per  unit  volume  and  P  is  called  the  
intensity  of  polarization. 
 
If  the  electric  field  is  not  very  strong,  t he  ratio  of  P  and  the  electric  field  is  a  constant. 
 

e
   χχχχ∴   =  

E

P
 

This  ratio  eχχχχ   is  called  the  electric  susceptibility  of  th e  dielectric  material  and  its  value  

depends  on  the  dielectric  material  and  its  t emperature. 
 
∴    P   =   bσ    =  eχχχχ E  

∴    E   =   
0000εεεε
fσ   -   

0000εεεε
P

   =   
0000εεεε
fσ    -   

0000εεεε
χχχχ  E e     [ using  equations  ( 1 )  and  ( 2 ) ] 

∴    E ( 0000εεεε   +  eχχχχ  )   =   fσ    =  0000εεεε Ef 

 ∴   E   =   f
 e     

E 
 
















+ χχχχεεεε
εεεε

0000

0000  

 
Here,  e      χχχχεεεε0000 +   =  εεεε   is  called  the  permittivity  of  the  medium  a nd  its  value  depends  on  the  

type  of  the  dielectric  material  and  its  temp erature.  Its  unit  is  C 2 N ----    1 m ----    2. 
 

∴    E   =    fE  εεεε
εεεε0000    =   

0000εεεεεεεε
fE

   =   
r

fE

εεεε    =   
K
fE

 

0000εεεε
εεεε

  is  the  relative  permittivity  rεεεε   and  is  also  called  dielectric  constant  K. 

 
This  shows  that  when  a  dielectric  material  h aving  dielectric  constant  K  is  placed  as  a  
medium  between  the  capacitor  plates,  the  elec tric  field  is  reduced  by  a  factor  of  K  and   the  
capacitance  of  the  capacitor  becomes 
 

' C   =   
d
A εεεε

   =   
d

AK  0000εεεε
   =   K C 

 
Thus  when  a  dielectric  medium  having  dielectr ic  constant  K  is  introduced  in  a  capacitor,  the  
value  of  its  capacitance  increases  to  K  time s  the  original  capacitance. 
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From  equation  ( 2 ),  we  have  0000εεεε  E   +   P   =   fσ       ( Q  bσ   =   P ) 

 
Here,  E  and  P  are  electric  and  polarization  fields  respectively  which  are  both  vector  
quantities. 

∴    we  can  write   
→→→→

++++
→→→→

0000εεεε P   E      =   
→→→→
D ,   where   

→→→→
D   is  called  the  displacement  field. 

 
 
  2.16  Van-de-Graf  Generator  
 
The  principle  of  this  machine  is  as  under. 
 
A  conducting  sphere  having  charge q  and  radiu s  r  is   
kept  centrally  inside  a  conducting  shell  havi ng  charge   
Q  and  radius  R  ( r  <  R ). 
 
The  electric  potential  on  the  spherical  shell   of  radius  R  and  
on  the  surface  of  the  sphere  of  radius  r  a re  respectively 
 

VR   =   
R
kq

      
R

kQ ++++           and          V r   =   
r

kq
      

R
kQ ++++  

 
Hence,  the  potential  difference  between  the  s urfaces  of  the  two  spheres  is 
 

Vr   -   VR   =   
r

kq
      

R
kQ ++++    -   

R
kq

      
R

kQ
-    =   kq 







  
R
1

   
r
1

          ----  

 
The  above  equation  shows  that  the  smaller  sp here  is  at  a  higher  potential  as  compared  t o  
the  large  spherical  shell.  So  if  the  two  ar e  connected  through  a  conductor,  then  the  el ectric  
charge  will  flow  from  the  smaller  sphere  to  the  larger  spherical  shell.  So  if  charge  is   
transferred  continuously  to  the  smaller  sphere   in  some  way,  then  it  will  accumulate  on  t he  
larger  shell  thereby  increasing  its  electric  potential  to  a  very  large  value. 
 
Van-de-Graf  used  this  principle  to  construct  a  generator  known  as  Van-de-Graf  generator  to   
generate  several  million  volts  of  electric  po tential. 
 
As  shown  in  the  figure,  a  non-conducting  bel t  is  
driven  across  two  pulleys.  The  lower  pulley  is  
connected  to  a  motor  and  the  upper  one  is  
surrounded  by  a  spherical  shell.  Positive  ele ctric  
charge  is  transferred  to  the  belt  near  the  lower  
pulley  using  a  discharge  tube  and  a  brush  w ith  
sharp  edges.  The  electric  charge  moves  to  th e  
upper  pulley  and  is  deposited  on  the  outer  shell  
with  a  metallic  brush.  Thus  electric  potentia l  of  
the  order  of  6  to  8  million  volts  is  gener ated  on  
the  outer  shell. 
 
The  highly  intense  electric  field  produced  in   this  
device  can  accelerate  electric  charges  which  can  
be  used  to  study  the  composition  of  matter  at  
the  microscopic  level.   


